ABSTRACT

Safe urban public spaces are vital owing to their impacts on public health, especially during pandemics such as the ongoing COVID-19 pandemic. Urban public spaces and urbanscape elements must be designed with the risk of viral transmission in mind. This work therefore examines how the design of urbanscape elements can be revisited to control COVID-19 transmission dynamics. Nine proposed models of urban public seating were thus presented and assessed using a transient three-dimensional computational fluid dynamics (CFD) model, with the Eulerian–Lagrangian method and discrete phase model (DPM). The proposed seating models were evaluated by their impact on the normalized air velocity, the diameter of coughing droplets, and deposition fraction. Each of the proposed models demonstrated an increase in the normalized velocity, and a decrease in the deposition fraction by >29%. Diagonal cross linear and curved triangle configurations demonstrated an improved airflow momentum and turbulent flow, which decreased the droplets deposition fraction by 68%, thus providing an improved, healthier urban public seating option.

Fuente: Building and Environment

Ingresar