ABSTRACT: 

Epidemiological data suggest that physical activity protects against severe COVID-19 and improves clinical outcomes, but how exercise augments the SARS-CoV-2 viral immune response has yet to be elucidated. Here we determine the antigen-specific CD4 and CD8 T-cell and humoral immunity to exercise in non-vaccinated individuals with natural immunity to SARS CoV-2, using whole-blood SARS-CoV-2 peptide stimulation assays, IFN-γ ELISPOT assays, 8-color flow cytometry, deep T-cell receptor (TCR) β sequencing, and anti-RBD-1 neutralizing antibody serology. We found that acute exercise reliably mobilized (∼2.5-fold increase) highly functional SARS-CoV-2-specific T-cells to the blood compartment in those with natural immunity to the virus. The mobilized cells reacted with spike protein (including alpha (α) and delta (δ)-variants), membrane, and nucleocapsid peptides in those previously infected but not in controls. Both groups reliably mobilized T-cells reacting with Epstein-Barr viral peptides. Exercise mobilized SARS-CoV-2 specific T-cells maintained broad TCR-β diversity with no impact on CDR3 length or V and J family gene usage. Exercise predominantly mobilized MHC I restricted (i.e. CD8+) SARS-CoV-2 specific T-cells that recognized ORF1ab, surface, ORF7b, nucleocapsid, and membrane proteins. SARS-CoV-2 neutralizing antibodies were transiently elevated ∼1.5-fold during exercise after infection. In conclusion, we provide novel data on a potential mechanism by which exercise could increase SARS-CoV-2 immunosurveillance via the mobilization and redistribution of antigen-specific CD8 T-cells and neutralizing antibodies. Further research is needed to define the tissue specific disease protective effects of exercise as SARS-CoV-2 continues to evolve, as well as the impact of COVID-19 vaccination on this response.

Fuente: Brain, Behavior, & Immunity – Health
Available online 31 January 2023, 100600
In Press, Journal Pre-proof

Ingresar