ABSTRACT
The rapid emergence of highly transmissible SARS-CoV-2 variants poses serious threat to the efficacy of vaccines and neutralizing antibodies. Thus, there is an urgent need to develop new and effective inhibitors against SARS-CoV-2 and future outbreaks. Here, we have identified a series of glycopeptide antibiotics teicoplanin derivatives that bind to the SARS-CoV-2 spike (S) protein, interrupt its interaction with ACE2 receptor and selectively inhibit viral entry mediated by S protein. Computation modeling predicts that these compounds interact with the residues in the receptor binding domain. More importantly, these teicoplanin derivatives inhibit the entry of both pseudotyped SARS-CoV-2 Delta and Omicron variants. Our study demonstrates the feasibility of developing small molecule entry inhibitors by targeting the interaction of viral S protein and ACE2. Together, considering the proven safety and pharmacokinetics of teicoplanin as a glycopeptide antibiotic, the teicoplanin derivatives hold great promise of being repurposed as pan-SARS-CoV-2 inhibitors.
Fuente: Biomedicine & Pharmacotherapy
Available online 3 January 2023, 114213